November, 9th – George Stothart (University of Bath)
Physics 3.34
Using Fast-Periodic-Visual-Stimulation to assess cognition in neurological disorders
Fast Periodic Visual Stimulation (FPVS) provides a new objective method for assessing an individual’s ability to discriminate between different categories of visual stimuli. Using a combination of steady state visual evoked potentials and oddball paradigms it has been demonstrated to be a powerful measure of visual discrimination in single subjects. Importantly what defines the visual categories can range from low-level perceptual properties to abstract cognitive properties. We have adapted this approach to examine a range of cognitive processes and will demonstrate that the technique can be used to assess the integrity of semantic categorisation, short term memory and visuo-spatial processing in single subjects in as little as 3 minutes EEG recording time. The implications for the objective assessment of cognition in dementia and the potential as an early diagnosis tool will be discussed.
researchportal.bath.ac.uk/en/persons/george-stothart
The neurocognitive mechanisms of voluntary decision
We can voluntarily make decisions to fulfil our goals and desires, even when all the options are similar to each other. This talk will discuss our work on using brain imaging, electrophysiology and computational modelling to understand the cognitive processes underlying such voluntary decisions. First, I will present fMRI evidence that during voluntary decision, a decision network in the medial frontal cortex accumulates action intention until a threshold is reached. Second, the behavioural randomness in a sequence of decisions fluctuates over time and correlated with both fMRI and MEG activity in the frontopolar cortex. This suggests a cortical network sensitive to information regularities, which concurrently monitor the choice in voluntary decisions. Last, I will present recent results on how perceptual salience and action outcomes affect the behavioural, EEG, and metacognitive measures in voluntary decisions. Our results highlight the potential and challenges of establishing a neurobiological theory of voluntary behaviour in humans.
Anticipating changes: decision-making with temporal expectations
Being able to experience time and build temporal expectations about future events is essential for our everyday activities and survival. Despite the central role that time plays in our lives, the neuronal and computational mechanisms that link our experience of time with decision-making remain poorly understood. In this talk, I will focus on the computational underpinning of decision-making with temporal expectations and present a probabilistic behavioural model that enables a systematic investigation of the interplay between temporal expectations and behaviour. The central assumption here is that humans form prior beliefs about the temporal regularities of a dynamic environment; these beliefs shape both the inference and the planning process. Using a sequential reversal learning task, I will illustrate the key properties of the model and demonstrate how it can be applied to behavioural data to infer prior beliefs of participants and to investigate interindividual behavioural differences.